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The spin-up of a two-layer fluid in a cylinder with a free surface and with a thin lower 
layer is examined in the laboratory. It is found that when the increase in rotation 
rate of the cylinder is large enough the radial outflow in the viscous boundary layer 
on the tank bottom is sufficient to cause the interface to descend near the centre of 
the tank and to intersect the bottom. The intersection between the interface and the 
bottom produces a front between stratified (two-layer) fluid and a central region 
(called the bare spot) in which the upper layer is in direct contact with the bottom. 
It is observed that the radius of the circular bare spot increases until the lower layer 
is spun up. Observations of the maximum size of the bare spot are compared with 
a theoretical calculation in which it is assumed that the lower layer acquires the new 
angular velocity of the container and where viscous coupling between the layers is 
neglected. An expansion in F,  the upper-layer Froude number, gives good agreement 
with the observations. 

At larger times the circular front is observed to be unstable to frontal waves which 
appear to gain energy via baroclinic instability from the sloping density interface. 
At  large amplitude these waves ' break ', producing regions of closed streamlines in 
the upper layer. The shape of the bare spot is severely distorted by these waves and 
the associated motions. The effect of the bottom stress on the spin-up of the upper 
layer is found to be limited to the bare spot where it is in direct contact with the 
bottom. Some comments are made on the formation and decay of fronts in the benthic 
boundary layer of the ocean. 

1. Introduction 
The response of a fluid in a rotating container to an increase in the rotation rate 

of the container is a fundamental problem in fluid mechanics. This spin-up problem 
has received considerable study since the early work of Ekman (1905), and a summary 
of this work which is still reasonably up to date can be found in Benton & Clark (1974). 

The spin-up of a homogeneous fluid in a cylinder rotating about its axis has been 
described by Greenspan & Howard (1963). They showed that the time taken for the 
fluid to adjust to the slightly increased rotation rate of the container was (H2/v52)i, 
where 52 is the rotation rate of the cylinder, v the kinematic viscosity of the fluid and 
H the fluid depth. This timescale is much shorter than the timescale H 2 / v  for the 
viscous diffusion of vorticity from the ends of the cylinder because in the presence 
of rotation the transfer of stress is essentially advective. The increased rotation rate 
leads to an increased centrifugal force on the fluid near to the ends of the cylinder 
which has been viscously accelerated, producing a radial outflow in the fluid adjacent 
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to these boundaries. Mass conservation requires that there be a corresponding inflow 
in the interior of the fluid. This secondary circulation advects rings of fluid towards 
the axis of rotation which, conserving their angular momentum, increase their 
angular velocity. 

I n  a stratified fluid the presence of density gradients in the interior of the fluid will 
affect the secondary circulation which gives rise to the spin-up. For a fluid with a 
constant vertical density gradient in a cylinder rotating about its (vertical) axis, 
Walin (1969) showed that spin-up occurs on the same timescale as for a homogeneous 
fluid, but now the spin-up state is one of non-uniform rotation. On this timescale the 
vorticity field is rearranged so that there is no differential rotation across the top and 
bottom Ekman layers. Experiments by Buzyna & Veronis (1971) were in reasonable 
agreement with these theoretical conclusions. 

The spin-up of a two-layer fluid has received relatively little attention, and this 
is the problem which we shall address here. Our attention was drawn to this problem 
from a consideration of some oceanographic data, and, in view of the particular 
configuration we chose to examine, it is worthwhile briefly reviewing the motivation. 

Observations of the density structure near the sea bottom over the Hatteras 
Abyssal Plain (Armi 1978) show that there is often present a benthic boundary layer. 
This layer is characterised by a vertically well-mixed region extending up from the 
bottom to a depth of between about 10 m and 50 m and usually capped on the top 
by a relatively stable pycnocline. I n  some places the depth of the benthic boundary 
layer is found to  vary abruptly with horizontal position. Such changes in depth were 
often associated with a benthic front where the capping pycnocline descended and 
intersected the bottom. This horizontal variability occurs on the scales of tens of km, 
and Armi & D’Asaro (1980) have suggested that it may result from subsidence 
produced by the overlying eddy field. When an anticyclonic eddy propagates into 
a region, the stress exerted by the bottom will cause a divergent flux in the Ekman 
layer, leading to a thinning of the benthic boundary layer underneath the eddy. If 
this process is vigorous enough the capping pycnocline will eventually reach the 
bottom producing a front. This process brings water from above the benthic 
boundary layer directly in contact with the sea bottom, and provides a mechanism 
for removing material from the sediments and putting i t  directly into the water 
column above the benthic boundary layer. Lambert et al. (1983) have invoked this 
mechanism to explain some of the anomalous vertical distributions of radon 222 
observed near the bottom in the oceans. 

The essential dynamics of this frontogenetic process have been reproduced by 
considering the spin-up of a two-layer fluid in a circular cylinder rotating about a 
vertical axis, in which the lower layer is much shallower than the upper layer. The 
upper surface is free, and so, ignoring any effect of the sidewall, the only stress exerted 
on the upper layer results from friction a t  the interface. I n  the frame of reference 
of the container after its angular velocity is increased, the flow in both layers is 
anticyclonic. As in the benthic boundary layer, Ekman suction reduces the depth of 
the lower layer near the centre of the tank and can cause the interface to intersect 
the bottom, producing a front. 

We have carried out laboratory experiments on this flow, and these are described 
in $2. A qualitative description of the flow is given in $3. Some theoretical calculations 
and a comparison between the theory and experiments is given in $94-7. Some 
discussion and the main conclusions are given in $8. 

Previous experimental work on two-layer spin-up by Holton (1965) and theoretical 
calculations by Holton (1965) and Pedlosky (1967) considered the case where the two 
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layers were of comparable depth and where the interface did not intersect the bottom. 
When the interface thickness was small compared with the Ekman layers Pedlosky 
showed that the stress was transmitted in a manner very similar to that in a 
homogeneous fluid, although local variations in layer thickness produced by baroclinic 
effects produce departures from solid-body rotation. When the interface thickness is 
larger than the Ekman layers the interfacial stress is much reduced, and the spin-up 
process has more in common with that of a uniformly stratified fluid. 

Holton (see also Baker 1968) observed baroclinic instability of the interface leading 
to non-axisymmetric motion during spin-up. We also observed the growth of 
baroclinic waves on the front. These waves are found to be qualitatively and 
quantitatively similar to instabilities observed on surface fronts (Griffiths & Linden 
1981). 

2. The experiments 
The experiments were conducted in a number of cylindrical perspex tanks of 

different dimensions. The internal radii of the tanks were 12.1 cm, 14.9 cm, 44.9 cm 
and 106.7 cm, and they each had a working depth of about 30 cm. In a given 
experiment one of these tanks was mounted on a rotating turntable, with the axis 
of the tank coincident with the (vertical) axis of the turntable. The tank was filled 
with fresh water to the required depth and then spun up until it  was in solid-body 
rotation. The upper surface of the liquid is a free surface. 

A second, denser layer of salt solution, usually containing dye for flow visualization, 
was then carefully added underneath the fresh water. The salt solution was 
introduced either via a small source covered with sponge rubber on the bottom of 
the tank or through a circular pipe attached to the wall of the tank a t  the bottom. 
In this way the dense fluid was added adjacent to the tank bottom, and spin-up of 
the lower layer was rapidly achieved. Once the required amount of salt solution had 
been added the whole system was left (typically for 30-60 min) until both layers were 
in solid-body rotation (see figure 1 a) .  

The rotation rate 52 of the turntable was then increased, and thereafter remained 
constant a t  its new value for the duration of the experiment. The increase in rotation 
rate of the turntable was achieved within one or two seconds, significantly less than 
one rotation period. The subsequent fluid flow was visualized by the dye in the lower 
layer and by paper particles floating on the free surface. I n  some experiments 
neutrally buoyant particles were introduced into the two layers, and the motion was 
revealed by these and by dye released from particles of potassium permanganate 
dropped into the tank. These motions were recorded using still, streak and cine 
photography, and most of the quantitative measurements were obtained from the 
photographic record. 

The buoyancy force associated with the density difference Ap between the two layers 
is characterized by a reduced gravity g' = g Aplp ,  where g is the gravitational 
acceleration and p the mean density. I n  these experiments 1 < g' < 50 cm s - ~ .  The 
depth of the lower layer h, was varied from 0.25 to  4.9 cm, that of the upper layer 
H from 2.0 to 32.1 cm, and their ratio 6 = h,/H was in the range 0.01 < 6 < 0.54. 
The Coriolis parameter f = 2Q was varied from 0.39 to 4.76 s-l, and the increase Af 
in rotation rate in an experiment was 0.04 < Af/f < 3.0. 

Since fresh and salt water, which were used as the working fluids, are miscible, 
surface tension is negligible a t  the interface between the la,yers. The kinematic 
viscosity v and the molecular diffusivity of salt K~ are both effectively constant over 
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FIQURE 1. Diagrammatic representations of the system before (a) and after (b) spin-up 0, the 
container by an amount 4Af. The situation shown in (b) is for the case where Af is large enough 
for a ‘bare spot’ of radius R,, to form during spin-up. The symbols are defined in the text. 

the range of concentrations used at 0.01 em2 s-l and 1.5 x lov5 em2 s-l respectively. 
In  a period of 1 h, therefore, molecular diffusion will have thickened the surface by 
approximately 0.5 em. This thickness is comparable to the typical thickness of the 
interfacial Ekman layer (0.3-0.8 em). We will return to this point later. 

3. A description of the spin-up process 
In  this section we shall describe the qualitative features of the flow generated during 

the spin-up of the fluid in the cylinder. Some theoretical considerations and a 



Two-layer spin-up and frontogenesis 73 

FIGURE 2 .  An example of the circular ‘bare spot’ of radius 10 cm, where the clear upper-layer fluid 
is in contact with the bottom. The dyed lower-layer fluid has been removed from the central region 
by Ekman-layer suction during spin-up. The edge of the bare spot is a front where the interface 
between the two layers intersects the bottom. In  this experiment R = 12.1 cm, h, = 0.6 cm, 
H = 30.0 cm, f = 0.81 s-l, Af = 2.82 s-l and g’ = 1.0 cm sP. The circular scale on the bottom of 
the tank is in incremental radii of 2 cm. 

quantitative comparison of the theory and the experiments will be given in the 
following sections. 

For the sake of simplicity we first describe the case where the upper layer is very 
deep and the ratio of layer depths 6 -+ I .  The initial response to the increase in 
rotation rate of the container is for the fluid in the lower layer adjacent to the tank 
bottom to be (viscously) accelerated. This accelerated fluid experiences an increased 
centrifugal force which produces a radial outflow in a thin (Ekman) layer near the 
tank bottom. The effect of this ‘centrifugal fan’ is to transport fluid outwards, raising 
the level of the interface a t  the outer wall and lowering it near the centre of the tank. 

If the increase in rotation rate is large enough, the interface will continue to descend 
and intersect the bottom of the tank. A circular front is thereby produced, marking 
the boundary between homogeneous (upper layer) fluid on the inside and the two-layer 
stratification on the outside. If the lower-layer fluid has been dyed, then a plan view 
reveals the position of the front as the boundary between clear fluid extending to the 
bottom of the tank in the centre and a ring of dyed fluid as shown on figure 2. The 
retreat of the lower-layer fluid exposes the tank bottom to the upper-layer fluid: we 
shall call this exposed region the ‘bare spot’. 

After some time the radius of the bare spot is observed to stop increasing and the 
front becomes stationary. During this growth of the bare spot the front remains 
circular. This situation is depicted schematically in figure 1 (b ) .  Viewed in the frame 
of reference of the container rotating a t  the new rate icf+ Af) the upper layer moves 
anticyclonically (with an azimuthal velocity given approximately by -+v Af ). The 
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FIGURE 3. A sequence of photographs showing the growth of the frontal waves on the edge of the 
bare spot. (a ) ,  taken a t  8 rotation periods after spin-up, shows the circular bare spot and evidence 
of Ekman-layer instability. The photographs (b)-(n were taken a t  approximately 10, 12, 14,20 and 
40 rotation periods after spin-up respectively. The parameter values are R = 12.1 cm. h, = 1.0 cm, 
H = 4.0 cm, f = 2.67 s-l, Af = 2.07 sP1 and g’ = 10 cm s - ~ .  
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lower layer is also observed to move anticyclonically, but a t  a much slower speed. 
The vertical shear across the interface is in cyclostrophic balance with the sloping 
interface. 

In  some experiments Ekman-layer instability is observed. An example of this 
instability is shown on figure 3 ( a ) ,  where the small-scale striations in the dye 
associated with the horizontal vortices produced by the instability are clearly visible. 
These vortices are aligned a t  a small angle to the flow and have a lengthscale 
proportional to the Ekman-layer thickness (see e.g. Greenspan 1968, pp. 275-281). 
These instabilities decay within a few rotation periods as the lower layer spins up. 

At larger times wavelike disturbances are observed to grow on the front. An 
example of the growth and evolution of these unstable waves in the small tank 
(R = 12.1 cm) is shown on figures S(b -8 .  I n  this example the frontal waves are 
beginning to  grow (figure 3b)  in the presence of the Ekman-layer instabilities. On 
figure 3 (c), taken some 4 rotation periods later, the Ekman-layer instabilities have 
decayed and only the frontal waves remain. At this stage the zonal wavenumber is 
n = 12. Large radial excursions of the front are produced by the disturbances as they 
grow to large amplitude (figures 3d-e), and the shape of the bare spot becomes very 
distorted (figure 3 8 .  The waves are observed to propagate anticyclonically, but a t  
a speed intermediate to that of the upper and lower layers. The wavelength of the 
frontal waves is observed to increase with time. For example, the azimuthal 
wavenumber n varies from 12 in figure 3 (c), 10 in 3 (d )  to 7 in 3 ( e ) ,  a timespan of 28 
rotation periods. 

The ultimate state in all the experiments is achieved when both layers acquire the 
new angular velocity of the tank and the interface takes the shape of the equilibrium 
parabola appropriate to the increased rotation rate. 

During the spin-up, mixing between the two layers sometimes occurs. Mixing was 
observed to occur more frequently in the larger two tanks where the velocities 
associated with spin-up of the lower layer were much larger. This mixing produced 
a thickened interface, but otherwise appeared to have little effect. 

4. Theory - infinite upper layer 
The formation and growth of the bare spot described in the previous section 

requires an outward radial flux of lower-layer fluid in the bottom Ekman layer. The 
cessation of the bare-spot growth can only occur if this Ekman-layer transport is 
reduced to zero, which would occur if the lower layer were to acquire the new angular 
velocity of the tank. We shall therefore assume that the ultimate size of the bare spot 
is obtained when this occurs and the lower layer is spun-up. For the sake of simplicity 
we shall also assume that the upper layer is infinitely deep (6 = 0) and that there is 
no interfacial friction. 

I n  the ultimate steady state the azimuthal velocity w(r) and the depth of the lower 

dh layer h(r)  then satisfy 
V2 

r dr ' 
-+fw = 9'- 

where g' is the reduced gravity, f = 252 is twice the original angular velocity of the 
tank and r the radial coordinate measured from the axis of rotation. When the lower 
layer is spun up v = +r Af, and it  is readily seen that 

h(r)  = Ar2 +B, (4.2) 
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where 
A = -[-+-(-Y]. f” Af 1 Af 

4g’ f 2 f 
The interface has a parabolic shape with the minimum depth a t  

The constant B is determined by conservation of the volume 

(4.3) 

r = 0. 
of the lower layer. 

When the interface does not intersect the bottom (h(r) + 0 , 0  < r < R )  conservation 
of volume implies 

2n s,” (Ar2 + B )  r dr = xh, R2 ,  

where h, is the initial depth of the lower layer and R is the tank radius. Solving this 
equation for B we find 

(4.4) h(r) = h,-A(iR2-r2 ). 

The interface touches the bottom of the tank if A = 2h,/R2, and using (4.3) we find 

f (4.5) 

For larger values of the incremental increase in rotation rate Af/f than that given 
by (4.5) the interface will intersect the bottom a t  r = Rh,. Applying the condition 
h(Rh,) = 0 gives B = - AR;,, and conservation of volume of the lower layer takes the 
form R 

A(r2 - Rg,) r dr = xh, R2. 

Solving this equation for R,,, we find 

This result is the main quantitative prediction of the theory, and will be compared 
with the experimental predictions. 

The timescale for the initial appearance of the bare spot can be estimated from 
the radial flux Q carried in the Ekman layer. This flux is well known to be (Greenspan 
1968) Q = (4.7) 

where 6, = [2v / ( f+  Af)$ is the thickness of the Ekman layer, and v1 is the velocity 
of the interior fluid (i.e. the lower layer) relative to the increased rotation rate of the 
container +(f+ Af). Taking v1 = - 9 Af, we get 

Q = rAf [-Ii. V 

W + A f  
Conservation of mass of the lower layer then gives 

(4.9) 

An estimate of the timescale T for the formation of the bare spot can be obtained 
by writing dh/dt - ha/?. Then from (4.9) we have 

(4.10) 

The assumption that the lower layer is spun up requires that an ageostrophic radial 
pressure gradient is set up to provide a small radial inflow throughout the lower layer. 
This radial pressure gradient is established by inertia-gravity waves which propagate 
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inwards from the outer boundary of the tank. For long waves with wavelength 
h = 2x/k 9 h,, the group velocity C (see Lighthill 1978, pp. 441442) is given by 

(4.11) 

The time T, taken for information to propagate from the boundary to the centre of 
the tank is 

(4.12) 

These waves are dispersive with the shortest wave travelling fastest. For wavelengths 
comparable or shorter than the Rossby radius of deformation 9 = (g'h,)i/f, an 
adequate approximation to the travel time (4.12) is 

R R 
Tw=(g'h,)!=fse (4.13) 

Note that this estimate is independent of wavenumber k. 
In most of the experiments W << R, and so T, is several rotation periods. The 

timescale T,  for the spin-up of an unstratified layer of depth h, by Ekman pumping 
is given by 

The ratio of these two timescales is therefore 

(4.14) 

(4.15) 

When T,/T, << 1 the radial pressure gradient required for spin-up is established 
very quickly, and so the homogeneous spin-up time T,  sets the timescale for the spin-up 
of the lower layer. On the other hand, when Tw/T, 9 1 the time taken for the 
information to propagate in from the outer boundary is the limiting factor. We note 
that when R+co the lower layer does not spin up, except by viscous diffusion of 
vorticity from the bottom boundary. 

Thus, although the prediction for the bare-spot radius given in (4.6) may be 
adequate when TWIT, << 1, we expect the prediction to be inappropriate when 
T,/T, % 1 and the lower layer does not spin up. In this latter case the fluid in the 
lower layer will accumulate within a Rossby radius or so of the outer boundary of 
the tank, and R,, will exceed the prediction given in (4.6). We shall comment further 
on the spin-up in this limit in $8. 

5. Quantitative observations of the spin-up 

5.1. Bare-spot formation 
The calculations presented in $4 provide predictions for the timescale r for the 
formation of the bare spot (4.10) and its ultimate radius Rbs given by (4.6). The time 
r for the initial formation was measured with a stopwatch as the elapsed time from 
the start of the spin-up until the interface first intersected the tank bottom. The 
results of these measurements are plotted on figure 4 against the predicted time r 
obtained from (4.10). Although the results are somewhat scattered, which is due in 
part to the difficulty in defining the precise moment when the interface touches the 
bottom, the observations agree fairly well with the calculations. 

The observed ultimate size R,, of the bare spot, non-dimensionalized by the tank 
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FIGURE 4. The observed spin-up time compared with the predicted value give by (4.10). The 
units are seconds and the straight line shows the theoretical value. 

radius R, is plotted on figure 5 against the theoretical estimate given by (4.6), which 
is shown as the solid line. These figures contain all the observations from the four 
different tanks and over the full parameter ranges given in $2. The different symbols 
distinguish experiments with different depth ratios 6 = h , / H ,  viz: 0 ,  0 < 6 < 0.1; 
0, 0 . 1 < 6 < 0 . 2 ;  ., 0 . 2 < 6 < 0 . 3 ;  0, 0 . 3 < 6 < 0 . 4 ;  +, 0 . 4 < 6 < 0 . 5 ;  X ,  

0.5 < 6 < 0.6. With 3 exceptions the observed values of the bare-spot radius are 
smaller than predicted, with the discrepancy increasing with increasing 6. This is to 
be expected as the theory assumes that the upper layer is infinitely deep (6 = 0) and 
ignores the motion in the upper layer. 

5.2. Upper-layer motion 

In  the experiments the upper layer has finite depth and, in contrast with the 
assumptions of $4, significant upper-layer flow was observed. The motion in the upper 
layer was visualized by paper particles floating on the free surface, and streak 
photography permitted accurate determination of their velocities. Since the flow in 
the upper layer is approximately geostrophic, the free-surface motion is representative 
of the flow a t  lower levels in this layer. 

During and immediately after the formation of the bare spot the flow is observed 
to be axisymmetric and, in the f f Af spun-up reference frame, anticyclonic. The 
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FIGURE 5. Observed values of the ultimate size of the bare spot Rbs non-dimensionalized by the 
tank radius R plotted against the predicted value given by (4.6). The data have been divided into 
those for the small tanks (R = 12.1 and 14.9 cm) in (a )  and for the large tanks (R = 44.7 and 
106.7 cm) in ( b ) .  The data are divided into different depth ratios: .,0 < 6 < 0.1 ; 0 , O . l  < 6 < 0.2; 
4, 0.2 < 6 Q 0.3; 0, 0.3 < 6 < 0.4; +, 0.4 < 6 Q 0.5; x ,  0.5 < 6 < 0.6. The predicted value for 
an infinite upper layer (8 = 0) is shown by the straight line. 
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RQURE 6. The magnitude of the (anticyclonic) azimuthal free-surface velocity 16) plotted against 
the dimensionless radius P = r /R .  The velocity 161 has been non-dimensionalized by the scale $r Af. 
Three velocity profiles are shown corresponding to 102 (a), 152 (A) and 234 (+) rotation periods 
after the start of the spin-up. In this experiment R = 44.7 cm, h, = 1.8cm, H = 20.9cm, 
f = 2.02 0, Af = 0.11 s-l and g’ = 10 cm s-~. The position of the bare spot 7 = 0.38 is indicated 
by the arrow. The solid line shows the velocity distribution obtained from conservation of potential 
vorticity in the upper layer. 

strength of this anticyclonic, zonal flow is greatest above the ring of lower-layer fluid 
(Rbs < r < R),  except for a region near the vertical wall of the tank where sidewall 
friction accelerates the flow. The flow above the bare spot is also anticyclonic, but 
in general is found to be considerably weaker. 

Examples of the radial profile of azimuthal velocity V for the case of a small bare 
spot (R,,/R = 0.38) are shown on figure 6. The velocity has been measured in the 
f+Af frame and non-dimensionalized by t r A f ,  and is plotted against the non- 
dimensional radius F = r /R .  Thus if the upper layer were to remain at rest (as is 
assumed in $4) IVl = 7, and the deviation of the observed profile from this line results 
from the finite depth of the upper layer and any frictional coupling between the layers. 
These profiles show that near the centre of the tank, over a region approximately 
equal to that of the bare spot, the velocity is approximately linear in r ,  corresponding 
to a (weak) solid-body rotation. Outside the bare spot the magnitude of the 
anticyclonic velocity increases more rapidly with radius, reaching a maximum near 
the sidewall, and then decreases again owing to the retardation of the anticyclonic 
flow by the sidewall boundary layer. 

The three velocity profiles shown in figure 6 were measured at 102 (e), 152 (A) 
and 234 (+ )  rotation periods after the start of the spin-up. Apart from the region 
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FIGURE 7.  Profiles of the dimensionless azimuthal, free-surface velocity plotted against radius for 
two experiments with a large bare spot. The position of the edge of the bare spot is indicated by 
an arrow. Both experiments were in a tank with R = 44.7 cm and with h, = 0.9 cm, H = 20.0 cm 
and g' = 10 cm s-'. In  ( a ) f  = 2.07 SO, Af = 0.072 s-l, and the profiles were measured a t  7 (a), 13 
(H), 33 (0), 67 ( + )  and 133 (A) rotation periods from the start of the spin-up. In  ( b ) j =  0.63 0, 
A j  = 0.26 s-l, and the profiles were measured a t  4 (a). 11 (0) and 21 ( + )  rotation periods. 



82 P. F .  Linden and G. J .  F .  van Heijst 

near the sidewall, the flow has an extremely slow time decay, indicating that the 
frictional coupling across the interface is very weak. (The homogeneous spin-up time 
based on the upper-layer depth is 24 revolutions.) On the other hand, over the region 
of the bare spot 0 ,< r < R,,, where the upper layer is in direct contact with the tank 
bottom, we expect frictional effects to be important. I n  the example shown on figure 
6 the area of the bare spot is small and the effect of bottom friction on the upper 
layer spin-up is weak. 

In  order to examine the influence of bottom friction on the upper layer, a number 
of experiments were performed in which a large bare spot was produced. Two typical 
examples of free-surface azimuthal velocity profiles (measured in the f + Af frame) 
are shown in figure 7. I n  both experiments R,, lies in the range 0.7R < R,, < 0.8R, 
and over the bare spot the velocities show an approximately linear dependence 
on r .  However, in contrast with the velocity distributions shown on figure 6, the 
profiles on figure 7 show a rapid decay with time, indicating that the size of the 
bare spot is of major importance for the spin-up of the upper layer. 

6. Finite upper layer 
In  the analysis given in $ 4 two important simplifications of the real situation were 

made. These were the assumptions of an infinitely deep upper layer and the neglect 
of any frictional coupling across the interface between the two layers. We have 
already seen in $ 5  that  the latter assumption is quite reasonable, and we now turn 
our attention to the effects of a finite upper layer of depth H .  

Assuming that no mixing occurs during spin-up, conservation of potential vorticity 
implies that  the azimuthal velocity V in the upper layer is governed by 

_ -  f f+l: 
H -  H+h,-h(r) '  

where 5 = rP1 d(r V)/dr is the relative vorticity in thef-frame. The lower-layer motion 
is still v = irAf, and the depth of the lower layer h(r) is given by 

I dh v2 VZ 
g - = f (v-  V)+---. 

dr r r  

We non-dimensionalize these equations by scaling the velocity by iR  Af, the 
horizontal lengths by the tank radius R, and the vertical depths by the lengthscale 
$R2/g'. The ratio of this latter scale with the depth of each layer is the Froude number 
for that layer. The dimensionless forms of (6.1) and (6.2) then become 

dh 
dr  
- 

I d  
r dr 

y - - ( rV )  = F(h,,-h). 

In  these equations and for the remainder of this section all variables are dimensionless 
unless stated otherwise. Two dimensionless parameters appear in these equations : 
y = iAf/f, the incremental increase in rotation rate, and F = fZR2/g'H, the Froude 
number for the upper layer. 

I n  the case when the upper layer is infinitely deep, F = 0, and so we seek a solution 
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to  (6.3) and (6.4) as a perturbation expansion in powers of F 4 1 .  Accordingly, we 

(6.5) 

write 
h = h(O) + Fh(l) + , . . , 
V = V(O) + F V(l) + . . . , 

Rbs = R(O)+FR(')+ .... 
We shall restrict our attention on the case where Af is large enough to produce a bare 
spot. In  this case we have the condition that 

i 
W,,) = 0, (6.6) 

and conservation of volume of the lower layer gives 

h(r)  r dr = tho. (6.7) 

At leading order we simply recover the solution for an infinitely deep upper layer 
given in $4. In dimensionless variables this is 

where A = a(r+y2) .  The first term in the expansion for R,, is given by (4.6), and in 
the present variables we have 

R(0) = [ 1 -(?)"I" . (6.9) 

At O ( F )  the upper-layer velocity satisfies 

and using (6.9) we find 

This upper-layer velocity implies a correction to the lower layer given by 

(6.10) 

(0 < r < R(O)), 

(6.1 1 )  

The boundary condition on h(l) is found by substituting 

h(U(R(0)) = -2AR(l)R(O), 

and the solution to (6.12) is then 

(6.12) 

(6.5) into (6.6) to give 

(6.13) 

In order to solve for R(l) we now apply the conservation of lower-layer volume given 
by (6.7). Substituting the series expansions (6.5) into (6.7) and using (6.8), we find, 
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after a few lines of algebra, that 
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(6.15) 

It is then straightforward to substitute (6.14) into (6.15) to obtain 

Hence the (dimensionless) radius of the bare spot is 

R,, = 1 - FQ(R(O)) + O(F2)) ,  (6.17) 

(6.18) 

The upper-layer velocity calculated from the conservation of potential vorticity 
and given explicitly in (6.11) can be compared with the velocity profiles presented in 
$5. Since the latter are measured on the f+Af  frame a term --+rAf has been added 
to V(l), and the observed value of R,, was used in (6.11). Over the region of the bare 
spot the velocity in the spun-up frame is i(1 -Af/S'Sfr; as observed, this is linear 
in r ,  and, provided that 6 < Af / f ,  the motion is anticyclonic. This condition is always 
satisfied in our experiments when a bare spot is formed. The predicted upper-layer 
velocity with R,, = 0.38 is shown as the solid curve on figure 6, and except for the 
region near the sidewall there is good agreement with the observations. Thus when 
the bare spot occupies only a small fraction of the total area the calculation profile, 
which is strictly only valid immediately after the formation of the bare spot, describes 
the upper-layer velocity and shows that frictional effects are weak. 

When the area of the bare spot is large, on the other hand, the inviscid calculation 
(6.11) is modified by bottom friction over the bare spot for times t > r ,  where 7 is 
the time a t  which the bare spot reaches its ultimate size. It is reasonable to assume 
that the central part of the upper layer then starts to spin up in a manner similar 
to the spin-up of a single layer of homogeneous fluid. In that case the time-dependent 
swirl velocity ?7* (measured in the f + Af frame) is (see Greenspan 1968, p. 168) 

where 
2-6x2+3x4(5+4 1nx)-14x6+3x8 

(0 < x < 1) .  
96x2( 1 - x') Q(x) = 

d,(F,t) = - i;f [ -f+ Af e-ZT* 1-  r j  
(6.19) 

where T, = fE$ t is the dimensionless time, with E ,  = 2v/fR2. 

the bare spot (0 < r < R,,) of the upper layer spins up according to 
By analogy with this one-layer spin-up i t  is assumed for t > r that  the region over 

where 
2v 

2F = f ( t - ~ ) , ? & ,  E = - 
f&, ' 

and Go is the initial solid-body rotation as given by (6.11) 

'uo(F,7)  = - -1  r. 1:; I 

(6.20) 

(6.21) 

The solid lines drawn on figures 7 (a ,  6 )  are the velocity distributions according to 
the theoretical predictions (6.20) and (6.21) for 0 < r < R,,, and they agree very well 
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FIQURE 8. Observed values of the dimensionless bare-spot radius R,,/R plotted against the value 
R(O)/R calculated when the upper layer is infinitely deep. The solid lines are the theoretical 
relationship (6.17) plotted for five different values of F = f R 2 / g ' H .  The symbols correspond to 
different ranges of F :  0 ,  0 < F < 0.1; 0, 0.1 < F < 1.0; ., 1.0 < F < 10; 0, 10 < F < 100; +, 
F > 100. 

with the experimental data. It can also be seen, especially in figure 7 ( b ) ,  that the spin-up 
of the upper fluid for R,, < r < R takes place much more slowly than a t  smaller radii. 

The effect of the finite upper-layer depth on the predicted size of the bare spot is 
shown on figure 8, where R,, as given by (6.17) is plotted as the solid curves against 
R(O) €or five values of the upper-layer Froude number F =f2R2/g'H of F = 0 (infinite 
upper layer), 0.1, 1 ,  10 and 100. The correction to the infinite-depth case is largest 
for small values of the bare spot, consistent with the data. The symbol for each data 
point has been coded for the appropriate value of F for that particular experiment, 
and we seen that the data roughly accord with the calculated values. 

A more direct comparison between experiment and theory is shown on figure 9, 
where the observed bare-spot radius is plotted against the predicted value given by 
(6.17). This figure shows there is quite good agreement between the predicted and 
measured values. The values of F in the experiments cover the range 0.1 < F < 246, 
and although the series expansion (6.5) is strictly only valid for F @ 1, no systematic 
trend between the differences between the predicted and observed values of the bare 
spot radius with F could be found. For large values of R,,, the observed values tend 
to be smaller than predicted. This discrepancy may be due to the effects of sidewall 
friction on the upper-layer velocity near the outer boundary of the tank (see 
figure 6). For smaller bare spots, on the other hand, the theoretical values tend to be 
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FIQURE 9. The observed bare-spot radius R,,/R plotted against the predicted value 
R(O’(1 -F&(R(O))) as given by (6.17). The points with crosses superimposed satisfy TWIT, 3 2 (see 
(4.15)). 

smaller than the observed ones, and in some cases the agreement is poor. We shall 
return to this comparison in $8. 

7. Instability of the bare spot 
As we briefly described in $3, the circular shape of the bare spot is distorted by 

the presence of waves which grow on the front surrounding the bare spot. The 
evolution of the bare spot as observed in the small tank (R = 12.1 em) is illustrated 
on figure 3. Observations made in the large tank (R = 44.7 em) show a similar wave 
patterns, although there are some differences. Ekman-layer instabilities were not 
observed in the large tank, and the structure of the backward breaking frontal waves 
is not so symmetrical. The frontal waves propagate anticyclonically as in the small 
tank, and their wavelength increases as they grow to large amplitude. However, the 
changes in wavelength are not as large as those changes observed in the small tank. 
These differences are thought to be due to the increased Reynolds numbers of the 
flow in the large tank and to increased interfacial slopes. Both of these effects are 
geometrical, and they lead to increased turbulence and interfacial mixing for the same 
incremental change in rotation rate (see (4.3) and (4.4)), as well as to more-pronounced 
baroclinic effects. 

A t  large amplitude the motion in the upper layer associated with the frontal waves 
is observed to form regions of closed streamlines producing cyclonic vortices. A 
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Position of 
undisturbed front 

FIQURE 10. A diagrammatic representation of the upper-layer flow showing the formation of 
cyclonic eddies above the intrusions of the lower-layer fluid across the position of the undisturbed 
front into the bare spot. The arrows indicate the direction of flow. 

schematic drawing showing the direction of motion is given on figure 10. The upper 
layer is observed to move anticyclonically (as shown by the solid arrows), with a 
greater speed on the stratified side of the front (see figure 6). The lower layer also 
moves anticyclonically, but much slower than the upper layer. Thus the horizontal 
shear between the two layers across the front is cyclonic, whilst the horizontal shear 
in the upper layer above the front is anticyclonic. 

We shall first describe the motion of the upper layer, as this is the most readily 
observed. With this viewpoint in mind we shall (for definiteness) term the portion 
of the wave where the front recedes towards the wall as the wave crest, and the region 
where the lower layer intrudes onto the bare spot as the wave trough. As noted above 
the waves propagate anticyclonically (from left to right on figure 10) and so the crests 
break ‘backwards’ with the formation of closed cyclonic eddies in the troughs. 
Occasionally the motion in the crests pinches off to form closed streamlines - the 
vortices so formed are anticyclonic. This form of wave breaking with the production 
of cyclone-anticyclonic vortex pairs has been observed in waves a t  a free surface front 
(Griffiths & Linden 1981, 1982). 

The motion in the lower layer is similar to that in the upper layer, with a cyclonic 
vortex being produced in each wave trough (still referring to the upper layer). Since 
the upper-layer wave trough is equivalent to a wave crest for the lower layer the 
presence of cyclonic circulation in the lower layer would seem to imply some 
asymmetry since the upper layer wave crests contain anticyclonic circulation. 
However, since the waves themselves are travelling anticyclonically more rapidly 
than the lower layer, relative to the wave8 the lower layer flow is reversed. Consequently, 
in a frame of reference moving with the waves the motion in both layers is 
symmetrical with anticyclonic vorticity being concentrated in the wave crests and 
cyclonic vorticity in the troughs. One difference between the two layers is reflected 
in the absence of the sharp cusp on the lower-layer crests which is present on upper- 
layer crests. This may be the result of increased frictional drag on the lower layer 
inhibiting the motion of the lower layer. 

At very large amplitude the waves exhibit significant radial and azimuthal 
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FIQURE 11 (a ,  b ) .  For caption see facing page. 
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FIGURE 11. A set of streak photographs showing the growth of baroclinic waves on the interface 
in a case when no bare spot is formed during spin-up. The initially circular flow (a )  is unstable to 
azimuthal waves with zonal wavenumber n = 8 ( 6 ,  c, d ) .  The photographs are 8 s exposures and 
were taken a t  19, 44, 70 and 84 revolutions respectively. In this experiment R = 44.7 cm, 
h, = 2.0 em, H = 5.0 cm, f = 1.85 s-l, Af = 0.34 s-l and g' = 10 cm sP. 
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motions. These cause regions of the tank bottom under the bare spot to be 
temporarily covered by lower-layer fluid as the waves pass by. Subsequently the 
bottom is again exposed to the upper layer. These are isopycnal motions which allow 
upper-layer fluid to be in contact with the bottom and then swept up over the 
interface, and they provide a potential source of energy for transporting material off 
the bottom into the upper layer (see Lambert et al. 1983). 

If, on the other hand, the change in rotation rate is not sufficiently large the descent 
of the interface in the centre of the tank is observed to cease before a bare spot is 
formed. An example of this case is shown on figure 11, which is a series of streak 
photographs showing the motion of small particles on the free surface. The variation 
in the depth of the lower layer is shown by the gradation in the tone due to the dye 
in the lower layer. (Although the central region is shallow as indicated by the light 
colour, the interface never intersected the bottom.) 

The initially circular flow is unstable with waves developing on the sloping 
interface. I n  this example the azimuthal wavenumber n = 8. The upper-layer flow 
is anticyclonic (clockwise), and the closed eddies which form are all cyclonic and, as 
is the case with the frontal waves, associated with the lower-layer crests. This can 
be seen from the presence of a relatively deep region of the lower layer underneath 
the cyclones as indicated by the darker concentration of dye. The closed circulations 
are observed to form near the outer wall of the tank where the interface slope is 
steepest (see (4.4)) and where there is cyclonic shear due to the presence of a sidewall 
boundary layer (see figure 6). The cyclones propagate towards the centre of the tank 
remaining above the wave crests (see figures llc-d). 

These observations reveal many similarities with waves observed on the fronts at 
the free surface by Griffiths & Linden (1981, 1982). These authors identified two 
energy sources for the waves a t  surface fronts: kinetic energy associated with the 
horizontal shear across the interface and potential energy associated with the 
horizontal density gradients. Both of these energy sources, which we shall refer to 
as barotropic and baroclinic respectively, are present in the current experiments. 

The simplest model for the baroclinic instabilities is to consider two uniform layers 
moving with constant, but different, velocities in a rotating channel. This model was 
first discussed by Phillips (1954) and later extended by Pedlosky (1970). In  this 
quasi-geostrophic approximation where interface slopes are small, they show that in 
the absence of friction growing modes will occur whenever the Froude number 
.F =f2L2/g'h, exceeds a critical value 8,. Here L is the width of the channel and 
h, the depth of, say, the lower layer. The critical value 8, depends on 6 = h,/H, the 
ratio of the layer depths, and at the critical value the marginally unstable waves have 
infinitely long downstream wavelength. On the other hand, when there is viscous 
dissipation in Ekman layers a t  the interface and a t  the upper and lower boundaries 
they showed (for 6 = 1 )  that these long waves are damped. In  addition to exceeding 
a critical Froude number it is also necessary to exceed a critical shear between the 
two layers to produce growing waves. Griffiths & Linden (1981) have extended this 
linear stability analysis to the case of unequal layer depths. They find that both the 
magnitude of the critical shear and 8, decrease as 6 increases. The wavenumber k 
of the marginally unstable mode is a weak function of the depth ratio, but for a fixed 
Froude number k increases as S increases. 

In  order to compare our observations with these calculations we shall ignore the 
effects of the circular geometry and define the Froude number 8 = fLL2/g'h,, where 
h, is the depth of the lower layer before spin-up and L = R -  R,, is the width of the 
annular region outside the bare spot. Consider now the sequence of events immediately 
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FIQURE 12. The zonal wavelength of the frontal instabilities non-dimensionalized by the width of 
the lower layer L = R - Rbs plotted against the Froude number 9 = fLZ/g’h,.  The solid curves 
are taken from theoretical estimates of the marginally stable wavelengths obtained by Griffiths & 
Linden (1981) for different values of the depth ratio 6. The circles correspond to experiments in 
which S 6 0.1 and the triangles for 6 > 0.1, and the data have been plotted separately for the large 
tank ( R  = 44.7 om) in (a) and the small tank ( R  = 12.1 cm) in ( b ) .  

following the spin-up of the cylinder. Azimuthal motion is transmitted to the lower 
layer whilst the interface is descending, and before the interface intersects the bottom 
a vertical shear exists across the interface. During this time the Froude number takes 
its maximum value with L = R, the radius of the tank, and is typically highly 
supercritical with values of 9 10. Under these conditions the quasigeostrophic 
theory would lead us to expect, in the absence of dissipation, growth of baroclinic 
waves within a few rotation periods (Griffiths & Linden 1982). We never observed 
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the growth of non-axisymmetric disturbances before the formation of the bare spot 
had occurred, a process which usually took many rotation periods (see figure 4). 

We conclude, therefore, that  dissipation in Ekman layers inhibits the growth of 
the baroclinic waves until a critical shear is exceeded. The shear across the interface 
increases as the lower layer spins up and is a maximum once the bare spot has reached 
its greatest diameter, and it is soon after this time that the frontal waves are observed. 
Once the critical shear is exceeded, baroclinic waves begin to grow with a given 
wavenumber as determined by Griffiths & Linden (1981). Comparison between the 
present observations and these theoretical predictions are shown on figures 12 (a-b). 
The dimensionless wavelength h / L  was calculated from the zonal wavenumber n 

h 2nR according to 

As was noted in $3, the zonal wavelength of the frontal waves was observed to 
increase during a given experiment. There is therefore some ambiguity in the value 
of A used in figure 12, and we have chosen the value that corresponds to the waves 
that grew to sufficiently large amplitude that closed streamlines were formed. Shorter 
wavelengths are produced by Ekman-layer instability (see figure 3a) and Kelvin- 
Helmholtz instability on the moving front. These instabilities were generally of short 
duration, and these have not been included on figure 12. At much longer times as 
the size of the bare spot diminishes, some waves were observed to decay presumably 
by bottom friction, and this transition is not included on figure 12. 

The agreement between the theoretical curves and the data on figure 12, together 
with the qualitative similarities described earlier, indicate that these waves on the 
bare-spot front have essentially the same characteristics as those observed on surface 
fronts by Griffiths & Linden (1981). Thus we conclude that these waves obtain a 
significant fraction of their energy from the potential energy stored in the sloping 
interface via baroclinic instablity. This conclusion is supported by the observation 
that the growth rate of the waves increased with the depth ratio 6. 

8. Summary and conclusions 
I n  this paper we have presented a theoretical and experimental investigation of 

the spin-up of a two-layer fluid in a cylinder. We have concentrated on the case in 
which the upper surface is free and where the change in rotation rate is sufficiently 
large so that suction into the bottom Ekman layer causes the interface to descend 
in the centre of the tank and intersect the bottom. Thus in a circular region centred 
on the axis of the tank (and the axis of rotation) the lower layer is removed by the 
spin-up and upper-layer fluid is in direct contact with the bottom. We call this region 
the 'bare spot '. 

Observations of the formation of the bare spot were made, and its ultimate size 
was compared with theoretical calculations based on the assumption that the bare 
spot stopped growing once the lower layer acquired the new angular velocity of the 
container. It was further assumed that there was no frictional coupling across the 
interface between the two layers. This latter assumption was supported by direct 
observations of the velocity of the upper layer, and by the fact (see $2) that in all 
the experiments the interface thickness exceeded the Ekman-layer thickness, 
Reasonably good agreement was obtained with the observations by theoretical 
calculations involving a perturbation expansion in the parameter F = fLR2/g'H, the 
Froude number for the upper layer. 
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As was pointed out in $4, the assumption that the lower layer acquires the increased 
angular velocity of the container will only be valid for sufficiently small containers. 
As the horizontal scale of the layer increases, the time taken for information to 
propagate in from the sidewall exceeds the (homogeneous) spin-up time of the lower 
layer, and flow in the Ekman layer will continue to accumulate fluid near the outer 
boundary of the tank. Under these circumstances we would expect the size of the 
bare spot to exceed the value predicted by (6.17). 

We established in $4 that the relevant ratio of timescales is TWIT, = vi f :  Rig': hi 
as given by (4.15), and we have marked on figure 9 those experiments in which 
TWIT, >, 2 (thus allowing for two spin-up times). For values of R,JR < 0.7 almost 
all the experiments in which the observed size of the bare spot significantly exceeds 
the theoretical prediction have values of TWITs 2 2 .  At larger values of R,,/R the 
observed values tend to be smaller than the theory predicts. This is probably a direct 
influence of the wall as the edge of the bare spot would be within one or two Rossby 
radii (based on the lower-layer depth) of the outer boundary of the tank. 

We therefore conclude that the size of the bare spot is adequately given by the 
leading order in the perturbation expansion given by (6.17), provided that the tank 
radius is small enough for information from the outer boundary to propagate inwards 
and cause the lower layer to spin up. A t  larger values of R the central portion of the 
lower layer does not spin up, and Ekman-layer transport continues, thereby 
producing a larger bare spot. 

At larger times the front a t  the edge of the bare spot was observed to become 
unstable to baroclinic frontal waves. These waves grow to large amplitude and then 
‘break ’ to form regions of closed streamlines in the upper layer. These waves severely 
distort the circularity of the bare spot, and as they propagate regions at the tank 
bottom are alternately brought into contact with the upper and then the lower layer. 
The flow patterns produced by these waves have qualitatively similar features to those 
produced at a front at the free surface, and the wavelengths agree with theoretical 
calculations of baroclinic instability including dissipation in Ekman layers (Griffiths 
& Linden 1981). 

In this paper we have concentrated on the initial stages of the spin-up of the 
two-layer system. The final approach to the ultimate state in which both layers 
acquire the new angular velocity of the container has not been examined quantitatively 
and must remain the subject of a further study. What does seem clear though is 
that the frontal waves will play an important role in this process, particularly when 
wave breaking occurs and regions of closed streamlines form. These vortices move 
across the frontal boundary and provide an efficient mechanism for removing 
potential energy from the front and transporting lower-layer fluid into the interior. 

We have shown that, when the lower layer is shallow, Ekman suction can be 
sufficient for frontogenesis. The experiment is not a direct model of the benthic 
boundary layer underneath an anticyclonic mesoscale eddy but there are sufficient 
similarities to the oceanic case to support the view proposed by Armi & D’Asaro (1980) 
that benthic fronts can be formed in such a situation. In this way the sea bottom 
is exposed to water from above the benthic boundary layer, and the presence of 
baroclinic instabilities on the front provides an important mechanism for transporting 
water on and off the exposed region. As Lambert et al. (1983) suggest, this process 
may be important for removing material from the oceanic sediments. 

This work has benefited from numerous stimulating conversations with Melvin 
Stern, and we are grateful to David Smeed for comments on an earlier draft of this 
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